CA Computer Applications Syllabus for QT-RA

Mathematics Section

SYLLABUS IN MATHEMATICS

- **1. Matrices :** Definition, Rank of matrix Systems of m linear equations with n unknown, Eigen value and eigen vectors of a square matrix.
- **3. Vector Algebra; Complex numbers;** Definitions, Vector products, Properties; Amplitude & Modules of a complex number, De Moivere's theorem and examples.
- **4. Applied Mathematics -** Laplace Transforms (Elementary transformation), Fourier series, (Basics definition and examples.), half range Fourier series and harmonic analysis.
- 5. Numerical Analysis Numerical Solutions of Algebraic and transcendental equations, Finite differences, Interpolation (For equal and unequal intervals) Numerical solutions of first order differential equations, Numerical Integration

6. Statistics and Probability

Measures of central tendency and dispersion curve fitting by least square methods .

Correlation and regression. analysis

 $\mbox{Probability}: Axiams$, conditional probability, probability distribution-Binomial poisson and normal distribution

TEXTBOOKS:

- 1. Higher Engineering Mathematics Dr. B.S. Grewal (37th Edition)
- 2. Elementary Engineering Mathematics- Dr. B.S. Grewal
- 3. Advanced Engineering Mathematics Erwin Kreyszig
- 4. Introduction to Numerical Analysis -S.S. Sastry

Part II: Discipline Oriented Section

Sl. No	Topics
1.	Computer Organization
	Basic Structure of Computers: Computer Types, Functional Units, Basic Operational Concepts, Bus Structures, Performance –Processor Clock, Basic
	Performance Equation, Clock Rate, Performance Measurement, Historical
	Perspective.
2.	Data Structures using C
2.	(Stack, recursion, Queues and lists, Trees, sorting, searching)
3.	Operating systems
	Introduction to Operating Systems, System structures: What operating systems do; Computer System organization; Computer
	System architecture; Operating System structure; Operating System
	operations; Process management; Memory management; Storage
	management; Protection and security; Distributed system; Special-purpose
	systems; Computing environments.Operating System Services; User -
	Operating System interface; System calls; Types of system calls; System program s; Operating System design and implementation; Operating System
	structure; Virtual machines; Operating System generation; System boot.
4	OOP with C++
4.	Introduction: Overview of C++, Sample C++ program, Different data
	types, operators, expressions, and statements, arrays and strings, pointers &
	user-defined types Function Components, argument passing, inline functions,
	function overloading, recursive functions Classes & Objects – I: Class Specification, Class Objects, Scope resolution
	operator, Access members, Defining member functions
	, Data hiding, Constructors, Destructors, Parameterized constructors, Static
	data members, Functions
	Classes & Objects –II: Friend functions, Passing objects as arguments,
	Returning objects, Arrays of objects, Dynamic objects, Pointers to objects,
	Copy constructors, Generic functions and classes, Applications Operator overloading using friend functions such as +, -, pre-increment,
	post-increment
	Inheritance – I: Base Class, Inheritance and protected members, Protected
	base class inheritance, Inheriting multiple base classes
	Inheritance – II: Constructors, Destructors and Inheritance, Passing parameters to base class constructors, Granting access, Virtual base classes
	Virtual functions, Polymorphism: Virtual function, Calling a Virtual
	function through a base class reference, Virtual attribute is inherited, Virtual
	functions are hierarchical, Pure virtual functions, Abstract classes, Using
	virtual functions, Early and late binding.
	I/O System Basics, File I/0: C++ stream classes, Formatted I/O, I/O manipulators, fatroom and the File alasses, File operations
	manipulators, fstream and the File classes, File operations Exception Handling, STL:
	Exception handling fundamentals, Exception handling options STL: An
	overview, containers, vectors, lists, maps.
5.	DBMS
5.	Introduction: Introduction; An example; Characteristics of Database
	approach; Actors on the screen; Workers behind the scene; Advantages of
	using DBMS approach; A brief history of database applications; when not to use a DBMS. Data models, schemas and instances; Three-schema architecture
	and data independence; Database languages and interfaces; The database
	system environment; Centralized and client-server architectures;
	Člassification of Database Management systems.
	Entity-Relationship Model: Using High-Level Conceptual Data Models for
	Database Design; An Example Database Application; Entity Types, Entity Sets Attributes and Keys: Relationship types, Relationship Sets, Roles and
	Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and

	 Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two. Relational Model and Relational Algebra : Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update 38 Operations, Transactions and dealing with constrain t violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations; Example s of Queries in Relational Algebra; Relational Database Design Using ER- to-Relational Mapping. SQL – 1: SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; More
	complex SQL Queries.
6.	 Analysis & Design of Algorithms Introduction: Notion of Algorithm, Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms Brute Force Approaches: Introduction, Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching. Divide and Conquer: Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance. The Greedy Method: The General Method, Knapsack Problem, Job Sequencing with Deadlines, Minimum-Cost Spanning Trees: Prim's Algorithm, Kruskal's Algorithm; Single Source Shortest Paths. Dynamic Programming: The General Method, Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths: General Weights, 0/1 Knapsack, The Traveling Salesperson problem.

TEXTBOOKS:

- 1. William Stallings: Computer Organization & Architecture, 7th Edition, PHI, 2006.
- 2. Yedidyah, Augenstein, Tannenbaum: Data Structures Using C and C++, 2nd Edition, Pearson Education, 2003
- 3. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 8th edition, Wiley India, 2009.
- 4. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill, 2003.
- 5. Elmasri and Navathe: Fundamentals of Database Systems,5th Edition, Pearson Education, 2007.
- 6. Anany Levitin: Introduction to The Design & Analysis of Algorithms, 2nd Edition, Pearson Education, 2007.(Listed topics only from the Chapters 1, 2, 3, 5, 7, 8, 10, 11).